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2.1 GLOSSARY

A amplitude

E electric field vector

r position vector

x, y, z rectangular coordinates

phase

2.2 INTRODUCTION

Interference results from the superposition of two or more electromagnetic waves. From a classical 
optics perspective, interference is the mechanism by which light interacts with light. Other phenom-
ena, such as refraction, scattering, and diffraction, describe how light interacts with its physical envi-
ronment. Historically, interference was instrumental in establishing the wave nature of light. The earli-
est observations were of colored fringe patterns in thin films. Using the wavelength of light as a scale, 
interference continues to be of great practical importance in areas such as spectroscopy and metrology.

2.3 WAVES AND WAVEFRONTS

The electric field vector due to an electromagnetic field at a point in space is composed of an ampli-
tude and a phase

E A( ) ( ) ( , , , )x y z t x y z t ei x y z t, , , , , , (1)

or

E r A r r( ) ( ) ( , ), ,t t ei t (2)

2.3



2.4  PHYSICAL OPTICS

where r is the position vector and both the amplitude A and phase  are functions of the spatial 
coordinate and time. As described in Chap. 12, “Polarization,” the polarization state of the field is 
contained in the temporal variations in the amplitude vector.

This expression can be simplified if  a linearly polarized monochromatic wave is 
assumed:

E A( ) ( ) [ ( , , )]x y z t x y z t ei t x y z, , , , , , (3)

where  is the angular frequency in radians per second and is related to the frequency v by

2 v (4)

Some typical values for the optical frequency are 5 × 1014 Hz for the visible, 1013 Hz for the infra-
red, and 1016 Hz for the ultraviolet. Note that in the expression for the electric field vector, the time 
dependence has been eliminated from the amplitude term to indicate a constant linear polarization. 
The phase term has been split into spatial and temporal terms. At all locations in space, the field 
varies harmonically at the frequency .

Plane Wave

The simplest example of an electromagnetic wave is the plane wave. The plane wave is produced by 
a monochromatic point source at infinity and is approximated by a collimated light source. The 
complex amplitude of a linearly polarized plane wave is

E E r A k r( ) ( ) [ ]x y z t t ei t, , , , (5)

where k is the wave vector. The wave vector points in the direction of propagation, and its magni-
tude is the wave number k 2 / , where  is the wavelength. The wavelength is related to the tem-
poral frequency by the speed of light in the medium:

v
c

nv
c

n
2 2 (6)

where n is the index of refraction, and c is the speed of light in a vacuum. The amplitude A of a 
plane wave is a constant over all space, and the plane wave is clearly an idealization.

If the direction of propagation is parallel to the z axis, the expression for the complex amplitude 
of the plane wave simplifies to

E A( ) [ ]x y z t ei t kz, , , (7)

We see that the plane wave is periodic in both space and time. The spatial period equals the wave-
length in the medium, and the temporal period equals 1/v. Note that the wavelength changes with 
index of refraction, and the frequency is independent of the medium.

Spherical Wave

The second special case of an electromagnetic wave is the spherical wave which radiates from an iso-
tropic point source. If the source is located at the origin, the complex amplitude is

E r t A r ei t kr( ) ( ) [ ], / (8)

where r (x2 y2 z2)1/2. The field is spherically symmetric and varies harmonically with time 
and the radial distance. The radial period is the wavelength in the medium. The amplitude of the 
field decreases as 1/r for energy conservation. At a large distance from the source, the spherical 
wave can be approximated by a plane wave. Note that the vector characteristics of the field (its 
polarization) are not considered here as it is not possible to describe a linear polarization pattern 
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of constant amplitude that is consistent over the entire surface of a sphere. In practice, we only 
need to consider an angular segment of a spherical wave, in which case this polarization concern 
disappears.

Wavefronts

Wavefronts represent surfaces of constant phase for the electromagnetic field. Since they are nor-
mally used to show the spatial variations of the field, they are drawn or computed at a fixed time. 
Wavefronts for plane and spherical waves are shown in Fig. 1a and b. The field is periodic, and a 
given value of phase will result in multiple surfaces. These surfaces are separated by the wavelength. 
A given wavefront also represents a surface of constant optical path length (OPL) from the source. 
The OPL is defined by the following path integral:

OPL n s ds
S

P
( ) (9)

where the integral goes from the source S to the observation point P, and n(s) is the index of refrac-
tion along the path. Variations in the index or path can result in irregularities or aberrations in the 
wavefront. An aberrated plane wavefront is shown in Fig. 1c. Note that the wavefronts are still sepa-
rated by the wavelength.

The local normal to the wavefront defines the propagation direction of the field. This fact pro-
vides the connection between wave optics and ray or geometrical optics. For a given wavefront, a set 
of rays can be defined using the local surface normals. In a similar manner, a set of rays can be used 
to construct the equivalent wavefront.

2.4 INTERFERENCE

The net complex amplitude is the sum of all of the component fields,

E E( ) ( )x y z t x y z ti
i

, , , , , , (10)

and the resulting field intensity is the time average of the modulus squared of the total complex 
amplitude

I x y z t x y z t( ) | ( )|, , , , , ,E 2
(11)

FIGURE 1 Examples of wavefronts: (a) plane wave; (b) spherical wave; and (c) aberrated 
plane wave.

(a) (c)(b)
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where  indicates a time average over a period much longer than 1/v. If we restrict ourselves to two 
interfering waves E1 and E2, this result simplifies to

I x y z t( ) | | | |, , , 2 2
2 1 (12)

or

I x y z t I I( ), , , 1 2 2 1 2 (13)

where I1 and I2 are the intensities due to the two beams individually, and the (x, y, z, t) dependence 
is now implied for the various terms.

This general result can be greatly simplified if we assume linearly polarized monochromatic 
waves of the form in Eq. (3):

E Ai i
i t x yx y z t x y z t e i i( ) ( ) [ ( , ,, , , , , , zz)] (14)

The resulting field intensity is

I x y z t I I t( ) ( ) ( ) (, , , cos[1 2 1 2 1 22 A A 11 2( ) ( ))x y z x y z, , , , ] (15)

The interference effects are contained in the third term, and we can draw two important conclusions 
from this result. First, if the two interfering waves are orthogonally polarized, there will be no visible 
interference effects, as the dot product will produce a zero coefficient. Second, if the frequencies of 
the two waves are different, the interference effects will be modulated at a temporal beat frequency 
equal to the difference frequency.

Interference Fringes

We will now add the additional restrictions that the two linear polarizations are parallel and that 
the two waves are at the same optical frequency. The expression for the intensity pattern now 
becomes

I x y z I I I I x y z( ) [ ( )], , cos , ,1 2 1 22 (16)

where 1 2  is the phase difference. This is the basic equation describing interfer-
ence. The detected intensity varies cosinusoidally with the phase difference between the two 
waves as shown in Fig. 2. These alternating bright and dark bands in the intensity pattern 

FIGURE 2 The variation in intensity as a function of the phase difference between two 
interfering waves.
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are referred to as interference fringes, and along a particular fringe, the phase difference is 
constant.

The phase difference is related to the difference in the optical path lengths between 
the source and the observation point for the two waves. This is the optical path difference
(OPD):

OPD OPL OPL1 2 2
(17)

or

2
OPD (18)

The phase difference changes by 2  every time the OPD increases by a wavelength. The OPD is 
therefore constant along a fringe.

Constructive interference occurs when the two waves are in phase, and a bright fringe or 
maximum in the intensity pattern results. This corresponds to a phase difference of an integral 
number of 2 ’s or an OPD that is a multiple of the wavelength. A dark fringe or minimum in the 
intensity pattern results from destructive interference when the two waves are out of phase by 
or the OPD is an odd number of half wavelengths. These results are summarized in Table 1. For 
conditions between these values, an intermediate value of the intensity results. Since both the 
OPD and the phase difference increase with the integer m, the absolute value of m is called the 
order of interference.

As we move from one bright fringe to an adjacent bright fringe, the phase difference changes by 
2 . Each fringe period corresponds to a change in the OPD of a single wavelength. It is this inher-
ent precision that makes interferometry such a valuable metrology tool. The wavelength of light is 
used as the unit of measurement. Interferometers can be configured to measure small variations in 
distance, index, or wavelength.

When two monochromatic waves are interfered, the interference fringes exist not only in the 
plane of observation, but throughout all space. This can easily be seen from Eq. (16) where the 
phase difference can be evaluated at any z position. In many cases, the observation of interference 
is confined to a plane, and this plane is usually assumed to be perpendicular to the z axis. The z
dependence in Eq. (16) is therefore often not stated explicitly, but it is important to remember that 
interference effects will exist in other planes.

Fringe Visibility

It is often more convenient to rewrite Eq. (16) as

I x y I x y x y x y z( ) ( , ){ ( ) [ ]}, , cos ( , , )0 1 (19)

or

I x y I x y x y x y( ) ( ){ ( ) [ ( ), , , cos OPD , /0 1 2 ]]} (20)

TABLE 1 The Phase Difference and OPD for 
Bright and Dark Fringes (m an Integer)

OPD

Bright fringe 2m m
Dark fringe 2(m 1) (m 1/2)
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where I x y I x y I x y0 1 2( ) ( ) ( ), , , , and

( )
[ ( ) ( )]

( ) (

/

x y
I x y I x y

I x y I x
,

, ,

,

2 1 2
1 2

1 2 ,, y)
(21)

Since the cosine averages to zero, I0 (x, y) represents the average intensity, and (x, y) is the local 
fringe contrast or visibility. The fringe visibility can also be equivalently calculated using the standard 
formula for modulation:

( , )
( , ) ( , )

( , ) ( ,
max min

max min

x y
I x y I x y

I x y I x yy)
(22)

where Imax and Imin are the maximum and minimum intensities in the fringe pattern.
The fringe visibility will have a value between 0 and 1. The maximum visibility will occur when 

the two waves have equal intensity. Not surprisingly, the visibility will drop to zero when one of 
the waves has zero intensity. In general, the intensities of the two waves can vary with position, so 
that the average intensity and fringe visibility can also vary across the fringe pattern. The average 
intensity in the observation plane equals the sum of the individual intensities of the two interfering 
waves. The interference term redistributes this energy into bright and dark fringes.

Two Plane Waves

The first special case to consider is the interference of two plane waves of equal intensity, polar-
ization and frequency. They are incident at angles 1 and 2 on the observation plane, as shown 
in Fig. 3. The plane of incidence is the x-z plane (the two k-vectors are contained in this plane). 
According to Eq. (5), the complex amplitude for each of these plane waves is

E Ai
i t kz kxx y z t e i i( ) [ ( ) ( )], , , cos sin (23)

where the dot product has been evaluated. For simplicity we will place the observation plane at 
z = 0, and the phase difference between the two waves is

( , ) (sin sin ) ( )(sin sinx y kx x1 2 1 22 / )) (24)

FIGURE 3 The geometry for the interference of two plane waves.
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The resulting intensity from Eq. (19) is

I x y I x( ) { cos[( )(sin sin )]}, /0 1 21 2 (25)

where I0 2A2 is twice the intensity of each of the individual waves. Straight equispaced fringes are 
produced. The fringes are parallel to the y axis, and the fringe period depends on the angle between 
the two interfering beams.

The fringe period p is

p
sin sin1 2

(26)

and this result can also be obtained by noting that a bright fringe will occur whenever the phase 
difference equals a multiple of 2 . A typical situation for interference is that the two angles of inci-
dence are equal and opposite, 1 2 . The angle between the two beams is 2 . Under this con-
dition, the period is

p
2 2sin (27)

and the small-angle approximation is given. As the angle between the beams gets larger, the period 
decreases. For example, the period is 3.8  at 15  (full angle of 30 ) and is  at 30  (full angle of 
60 ). The interference of two plane waves can be visualized by looking at the overlap or moiré of 
two wavefront patterns (Fig. 4). Whenever the lines representing the wavefronts overlap, a fringe 
will result. This description also clearly shows that the fringes extend parallel to the z axis and exist 
everywhere the two beams overlap.

Plane Wave and Spherical Wave

A second useful example to consider is the interference of a plane wave and a spherical wave. 
Once again the two waves have the same frequency. The plane wave is at normal incidence, 
the spherical wave is due to a source at the origin, and the observation plane is located at 
z R. The wavefront shape at the observation plane will be a spherical shell of radius R. 

FIGURE 4 The interference of plane waves incident at  resulting in straight fringes.
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Starting with Eq. (8), the complex amplitude of the spherical wave in the observation 
plane is

E t A R e A R ei t k R i t( ) ( ) ( )[ ( ) ] [/
, / /

2 2 1 2 kk R R( / )]2 2 (28)

where ( )x y2 2 1 2, and the square root has been expanded in the second expression. This expan-
sion approximates the spherical wave by a parabolic wave with the same vertex radius. An additional 
assumption is that the amplitude of the field A/R is constant over the region of interest. The field for 
the plane wave is found by evaluating Eq. (23) at z R and 0. The phase difference between the 
plane and the sphere is then

( )
2

R
(29)

and the resulting intensity pattern is

I I
R

( ) 0

2

1 cos (30)

The fringe pattern comprises concentric circles, and the radial fringe spacing decreases as the radius 
 increases. The intensities of the two waves have been assumed to be equal at the observation plane. 

This result is valid only when  is much smaller than R. 
The radius of the mth bright fringe can be found by setting 2 m :

m mR2 (31)

where m is an integer. The order of interference m increases with radius. Figure 5 shows a visualiza-
tion of this situation using wavefronts. This fringe pattern is the Newton’s ring pattern and is dis-
cussed in more detail later, under “Fizeau Interferometer.” This picture also shows that the radii of 
the fringes increase as the square root of R.

The analysis of the spherical wave could also have been done by using the sag of a spherical 
wavefront to produce an OPD and then converting this value to a phase difference. The qua-
dratic approximation for the sag of a spherical surface is 2/2R. This corresponds to the OPD 

FIGURE 5 The interference of a plane wave and a spherical wave.
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between the spherical and planar wavefronts. The equivalent phase difference [Eq. (18)] is then 
2 / R , as before.

Two Spherical Waves

When considering two spherical waves, there are two particular geometries that we want to exam-
ine. The first places the observation plane perpendicular to a line connecting the two sources, and 
the second has the observation plane parallel to this line. Once again, the sources are at the same 
frequency.

When the observations are made on a plane perpendicular to a line connecting the two sources, 
we can use Eq. (28) to determine the complex amplitude of the two waves:

E t A R ei
i t k R Ri i( ) ( ) [ ( / )], /

2 2 (32)

Let d R R1 2 be the separation of the two sources. For simplicity, we have also assumed that the 
amplitudes of the two waves are equal (R is an average distance). The phase difference between the 
two waves is

2

1 2

21 1 2 2
R R

d d d

R2
(33)

where the approximation R1R2 R2 has been made. There are two terms to this phase difference. 
The second is a quadratic phase term identical in form to the result obtained from spherical and 
plane waves. The pattern will be symmetric around the line connecting the two sources, and its 
appearance will be similar to Newton’s rings. The equivalent radius of the spherical wave in Eq. (29) 
is R2/d. The first term is a constant phase shift related to the separation of the two sources. If this 
term is not a multiple of 2 , the center of the fringe pattern will not be a bright fringe; if the term is 

, the center of the pattern will be dark. Except for the additional phase shift, this intensity pattern 
is not distinguishable from the result in the previous section. It should be noted, however, that a 
relative phase shift can be introduced between a spherical wave and a plane wave to obtain this same 
result.

An important difference between this pattern and the Newton’s ring pattern is that the order 
of interference (|m| defined by 2 m) or phase difference is a maximum at the center of 
the pattern and decreases with radius. The Newton’s ring pattern formed between a plane and 
a spherical wave has a minimum order of interference at the center of the pattern. This distinc-
tion is important when using polychromatic sources.

There are several ways to analyze the pattern that is produced on a plane that is parallel to a 
line connecting the two sources. We could evaluate the complex amplitudes by using Eq. (28) and 
moving the center of the spherical waves to ±d/2 for the two sources. An equivalent method is to 
compare the wavefronts at the observation plane. This is shown in Fig. 6. The OPD between the two 
wavefronts is

OPD ,
/ /

( )
[( ) ] [( ) ]

x y
x d y

L

x d y

L

2

2

2

2

2 2 2 2

(34)

where the quadratic approximation for the wavefront sag has been assumed, and L is the dis-
tance between the sources and the observation plane. After simplification, the OPD and phase 
differences are

OPD ,( )x y
xd
L

(35)
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and

( )x y
xd
L

,
2

(36)

Straight equispaced fringes parallel to the y axis are produced. The period of the fringes is L/d. This 
fringe pattern is the same as that produced by two plane waves. Note that these fringes increase in 
spacing as the distance from the sources increases. The approximations used require that L be much 
larger than  and d.

Figure 7 shows the creation of the fringe patterns for two point sources. The full three-
dimensional pattern is a series of nested hyperboloids symmetric about the line connecting the 
sources. Above the two sources, circular fringes approximating Newton’s rings are produced, 
and perpendicular to the sources, the fringes appear to be straight and equispaced. The actual 
appearance of these patterns is modified by the approximations used in the derivations, and as a 
result, these two specific patterns have limited lateral extent.

Aberrated Wavefronts

When an aberrated or irregularly shaped wavefront is interfered with a reference wavefront, an 
irregularly shaped fringe pattern is produced. However, the rules for analyzing this pattern are 
the same as with any two wavefronts. A given fringe represents a contour of constant OPD or 
phase difference between the two wavefronts. Adjacent fringes differ in OPD by one wavelength 

W2

OPD

–d/2

d/2

W1

Sources

L

x

z

FIGURE 6 The interference of two spherical waves on a plane parallel to the sources.
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or equivalently correspond to a phase difference of 2 . If the reference is a plane wave, the abso-
lute shape of the irregular wavefront is obtained. If the reference is a spherical wave, or another 
aberrated wave, the measured OPD or phase difference map represents the difference between 
the two wavefronts.

Temporal Beats

In Eq. (15) it was noted that if the waves are at different frequencies, the interference effects are 
modulated by a beat frequency. Rewriting this expression assuming equal-intensity parallel-polar-
ized beams produces

I x y t I vt x y( ) { cos[ ( )]}, , ,0 1 2 (37)

where v v v1 2. The intensity at a given location will now vary sinusoidally with time at the beat 
frequency v. The phase difference appears as a spatially varying phase shift of the beat fre-
quency. This is the basis of the heterodyne technique used in a number of interferometers. It is com-
monly used in distance-measuring interferometers.

In order for a heterodyne system to work, there must be a phase relationship between the 
two sources even though they are at different frequencies. One common method for obtaining 
this is accomplished by starting with a single source, splitting it into two beams, and frequency-
shifting one beam with a known Doppler shift. The system will also work in reverse; measure 
the interferometric beat frequency to determine the velocity of the object producing the 
Doppler shift.

FIGURE 7 The interference of two spherical waves.
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Coherence

Throughout this discussion of fringe patterns, we have assumed that the two sources producing the 
two waves have the same frequency. In practice, this requires that both sources be derived from a 
single source. Even when two different frequencies are used [Eq. (37)] there must be an absolute 
phase relation between the two sources. If the source has finite size, it is considered to be com-
posed of a number of spatially separated, independently radiating point sources. If the source has 
a finite spectral bandwidth, it is considered to be composed of a number of spatially coincident 
point sources with different frequencies. These reductions in the spatial or temporal coherence of 
the source will decrease the visibility of the fringes at different locations in space. This is referred 
to as fringe localization. These effects will be discussed later in this chapter and also in Chap. 5, 
“Coherence Theory.”

There are two general methods to produce mutually coherent waves for interference. The 
first is called wavefront division, where different points on a wavefront are sampled to produce 
two new wavefronts. The second is amplitude division, where some sort of beamsplitter is used 
to divide the wavefront at a given location into two separate wavefronts. These methods are dis-
cussed in the next sections.

2.5 INTERFERENCE BY WAVEFRONT DIVISION

Along a given wavefront produced by a monochromatic point source, the wavefront phase is con-
stant. If two parts of this wavefront are selected and then redirected to a common volume in space, 
interference will result. This is the basis for interference by wavefront division.

Young’s Double-Slit Experiment

In 1801, Thomas Young performed a fundamental experiment for demonstrating interference and 
the wave nature of light. Monochromatic light from a single pinhole illuminates an opaque screen 
with two additional pinholes or slits. The light diffracts from these pinholes and illuminates a view-
ing screen at a distance large compared to the pinhole separation. Since the light illuminating the 
two pinholes comes from a single source, the two diffracted wavefronts are coherent and interfer-
ence fringes form where the beams overlap.

In the area where the two diffracted beams overlap, they can be modeled as two spherical waves 
from two point sources, and we already know the form of the solution for the interference from 
our earlier discussion. Equispaced straight fringes are produced, and the period of the fringes is 

L d/ , where L is the distance to the screen and d is the separation of the pinholes. The fringes are 
oriented perpendicular to the line connecting the two pinholes.

Even though we already know the answer, there is a classic geometric construction we should 
consider that easily gives the OPD between the two wavefronts at the viewing screen. This is shown 
in Fig. 8. S0 illuminates both S1 and S2 and is equidistant from both slits. The OPD for an observa-
tion point P at an angle  or position x is

OPD S P S P2 1 (38)

We now draw a line from S1 to B that is perpendicular to the second ray. Since L is much larger than 
d, the distances from B to P and S1 to P are approximately equal. The OPD is then

OPD S B d d
dx
L2 sin (39)
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and constructive interference or a bright fringe occurs when the OPD is a multiple of the wave-
length: OPD m , where m is an integer. The condition for the mth order bright fringe is

Bright fringe or: sin( )
m

d
x

m L

d
(40)

This construction is useful not only for interference situations, but also for diffraction analysis.

Effect of Slit Width

The light used to produce the interference pattern is diffracted by the pinholes or slits. Interference 
is possible only if light is directed in that direction. The overall interference intensity pattern is 
therefore modulated by the single-slit diffraction pattern (assuming slit apertures):

I x I
Dx

L
x

xd
L

( ) ( )0
2 1

2
sinc cos (41)

where D is the slit width, and a one-dimensional expression is shown. The definition of a sinc 
function is

sinc( )
sin( )

(42)

where the zeros of the function occur when the argument is an integer. The intensity variation in the 
y direction is due to diffraction only and is not shown. Since the two slits are assumed to be illuminated 
by a single source, there are no coherence effects introduced by using a pinhole or slit of finite size.

The term (x) is included in Eq. (41) to account for variations in the fringe visibility. These 
could be due to unequal illumination of the two slits, a phase difference of the light reaching the 
slits, or a lack of temporal or spatial coherence of the source S0.

d

P

x

zL
S0

S1

S2
OPD

B

FIGURE 8 Young’s double-slit experiment.
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Other Arrangements

Several other arrangements for producing interference by division of wavefront are shown in 
Fig. 9. They all use a single source and additional optical elements to produce two separate and 
mutually coherent sources. Fresnel’s biprism and mirror produce the two virtual source images, 
Billet’s split lens produces two real source images, and Lloyd’s mirror produces a single virtual 
source image as a companion to the original source. Interference fringes form wherever the two 
resulting waves overlap (shaded regions). One significant difference between these arrange-
ments and Young’s two slits is that a large section of the initial wavefront is used instead of just 
two points. All of these systems are much more light efficient, and they do not rely on diffrac-
tion to produce the secondary wavefronts.

In the first three of these systems, a bright fringe is formed at the zero OPD point between the 
two sources as in the double-slit experiment. With Lloyd’s mirror, however, the zero OPD point has 
a dark fringe. This is due to the phase shift that is introduced into one of the beams on reflection 
from the mirror.

1

0

2

(a)

0

1

2

(b)

FIGURE 9 Arrangements for interference by division of wavefront: (a) Fresnel’s biprism; 
(b) Fresnel’s mirror; (c) Billet’s split lens; and (d) Lloyd’s mirror.
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Source Spectrum

The simple fringe pattern produced by the two-slit experiment provides a good example to examine 
the effects of a source with a finite spectrum. In this model, the source can be considered to be a col-
lection of sources, each radiating independently and at a different wavelength. All of these sources 
are colocated to produce a point source. (Note that this is an approximation, as a true point source 
must be monochromatic.) At each wavelength, an independent intensity pattern is produced:

I x I
xd
L

I( ) cos cos, 0 01
2

1
2 OOPD

(43)

where the period of the fringes is L d/ , and a fringe visibility of one is assumed. The total intensity 
pattern is the sum of the individual fringe patterns:

I x S I x d S v I x v dv( ) ( ) ( ) ( ) ( ), ,
0 0

(44)

where S( ) or S(v) is the source intensity spectrum which serves as a weighting function.

1

2

0

(c)

0

1

(d)

FIGURE 9 (Continued)



2.18  PHYSICAL OPTICS

The effect of this integration can be seen by looking at a simple example where the source is 
composed of three different wavelengths of equal intensity. To further aid in visualization, let’s use 
Blue (400 nm), Green (500 nm), and Red (600 nm). The result is shown in Fig. 10a. There are three 
cosine patterns, each with a period proportional to the wavelength. The total intensity is the sum of 
these curves. All three curves line up when the OPD is zero (x 0), and the central bright fringe is 
now surrounded by two-colored dark fringes. These first dark fringes have a red to blue coloration 
with increasing OPD. As we get further away from the zero OPD condition, the three patterns get 
out of phase, the pattern washes out, and the color saturation decreases. This is especially true when 
the source is composed of more than three wavelengths.

It is common in white light interference situations for one of the two beams to undergo an addi-
tional phase shift. This is the situation in Lloyd’s mirror. In this case, there is a central dark fringe 
at zero OPD with colored bright fringes on both sides. This is shown in Fig. 10b, and the pattern is 
complementary to the previous pattern. In this case the first bright fringe shows a blue to red color 
smear. The dark central fringe is useful in determining the location of zero OPD between the two 
beams.

The overall intensity pattern and resulting fringe visibility can be computed for a source with a 
uniform frequency distribution over a frequency range of v :

I x
v

I x v dv
v

I
vxd

cL
( ) ( )

1 1
1

2
0, cos dv

v v

v v

v v

v v

0

0

0

0

2

2

2

2

/

/

/

/
(45)

where v0 is the central frequency, and the 1/ v term is a normalization factor to assure that the aver-
age intensity is I0. After integration and simplification, the result is
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sinc cos (46)

where the sinc function is defined in Eq. (42). A fringe pattern due to the average optical frequency 
results, but it is modulated by a sinc function that depends on v and x. The absolute value of the 
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FIGURE 10 The interference pattern produced by a source with three separate wave-
lengths: (a) zero OPD produces a bright fringe and (b) zero OPD produces a dark fringe.
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sinc function is the fringe visibility (x), and it depends on both the spectral width and position of 
observation. The negative portions of the sinc function correspond to a  phase shift of the fringes.

It is informative to rewrite this expression in terms of the OPD:

I x I
v

c
( ) cos0

0

1
2

sinc
OPD OPD

(47)

where 0 is the wavelength corresponding to v0. Good fringe visibility is obtained only when either 
the spectral width is small (the source is quasi-monochromatic) or the OPD is small. The fringes 
are localized in certain areas of space. This result is consistent with the earlier graphical representa-
tions. In the area where the OPD is small, the fringes are in phase for all wavelengths. As the OPD 
increases, the fringes go out of phase since they all have different periods, and the intensity pattern 
washes out.

This result turns out to be very general: for an incoherent source, the fringes will be localized 
in the vicinity of zero OPD. There are two other things we should notice about this result. The 
first is that the first zero of the visibility function occurs when the OPD equals c / v. This distance 
is known as the coherence length as it is the path difference over which we can obtain interference. 
The second item is that the visibility function is a scaled version of the Fourier transform of the 
source frequency spectrum. It is evaluated for the OPD at the measurement location. The Fourier 
transform of a uniform distribution is a sinc function. We will discuss this under “Coherence and 
Interference” later in the chapter.

2.6 INTERFERENCE BY AMPLITUDE DIVISION

The second general method for producing interference is to use the same section of a wavefront 
from a single source for both resulting wavefronts. The original wavefront amplitude is split into 
two or more parts, and each fraction is directed along a different optical path. These waves are then 
recombined to produce interference. This method is called interference by amplitude division. There 
are a great many interferometer designs based on this method. A few will be examined here, and 
many more will be discussed in Chap. 32, “Interferometers.”

Plane-Parallel Plate

A first example of interference by amplitude division is a plane-parallel plate illuminated by a 
monochromatic point source. Two virtual images of the point source are formed by the Fresnel 
reflections at the two surfaces, as shown in Fig. 11. Associated with each of the virtual images is a 
spherical wave, and interference fringes form wherever these two waves overlap. In this case, this is 
the volume of space on the source side of the plate. The pattern produced is the same as that found 
for the interference of two spherical waves (discussed earlier under “Two Spherical Waves”), and 
nonlocalized fringes are produced. The pattern is symmetric around the line perpendicular to the 
plate through the source. If a screen is placed along this axis, a pattern similar to circular Newton’s 
ring fringes are produced as described by Eq. (33), where d 2t/n is now the separation of the vir-
tual sources. The thickness of the plate is t, its index is n, and the distance R is approximately the 
screen-plate separation plus the source-plate separation. We have ignored multiple reflections in 
the plate. As with the interference of two spherical waves, the order of interference is a maximum at 
the center of the pattern.

The interference of two plane waves can be obtained by illuminating a wedged glass plate with 
a plane wavefront. If the angle of incidence on the first surface is and the wedge angle is , two 
plane waves are produced at angles and 2n due to reflections at the front and rear surfaces. 
Straight equispaced fringes will result in the volume of space where the two reflected waves over-
lap. The period of these fringes on a screen parallel to the plate is given by Eq. (26), where the two 
reflected angles are used.
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Extended Source

An extended source is modeled as a collection of independent point sources. If the source is quasi-
monochromatic, all of the point sources radiate at the same nominal frequency, but without a phase 
relationship. Each point source will produce its own interference pattern, and the net intensity pat-
tern is the sum or integral of all the individual intensity patterns. This is the spatial analogy to the 
temporal average examined earlier under “Source Spectrum.”

With an extended source, the fringes will be localized where the individual fringe position or 
spacing is not affected by the location of the point sources that comprise the extended source. We 
know from our previous examples that a bright fringe (or a dark fringe, depending on phase shifts) 
will occur when the OPD is zero. If there is a location where the OPD is zero independent of source 
location, all of the individual interference patterns will be in phase, and the net pattern will show 
good visibility. In fact, the three-dimensional fringe pattern due to a point source will tend to shift 
or pivot around this zero-OPD location as the point source location is changed. The individual pat-
terns will therefore be out of phase in areas where the OPD is large, and the average intensity pattern 
will tend to wash out in these regions as the source size increases.

The general rule for fringe visibility with an extended quasi-monochromatic source is that the 
fringes will be localized in the region where the OPD between the two interfering wavefronts is 
small. For a wedged glass plate, the fringes are localized in or near the wedge, and the best visibility 
occurs as the wedge thickness approaches zero and is perhaps just a few wavelengths. The allowable 
OPD will depend on the source size and the method of viewing the fringes. This result explains why, 
under natural light, interference effects are seen in thin soap bubbles but not with other thicker glass 
objects. An important exception to this rule is the plane-parallel plate where the fringes are localized 
at infinity.

Fringes of Equal Inclination

There is no section of a plane-parallel plate that produces two reflected wavefronts with 
zero OPD. The OPD is constant, and we would expect, based on the previous section, that 
no high-visibility fringes would result with an extended source. If, however, a lens is used 

t

S0

Screen

S1 S2

Index = n

FIGURE 11 Interference from a plane-parallel plate and a point source.
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to collect the light reflected from the plate, fringes are formed in the back focal plane of the 
lens. This situation is shown in Fig. 12, and any ray leaving the surface at a particular angle 

 is focused to the same point P. For each incident ray at this angle, there are two parallel 
reflected rays: one from the front surface and one from the back surface. The reflections 
from different locations on the plate at this angle are due to light from different points in 
the extended source. The OPD for any pair of these reflected rays is the same regardless of 
the source location. These rays will interfere at P and will all have the same phase difference. 
High-visibility fringes result. Different points in the image plane correspond to different 
angles. The formation of these fringes localized at infinity depends on the two surfaces of the 
plate being parallel.

The OPD between the reflected rays is a function of the angle of incidence , the plate index n,
and thickness t :

OPD cos2nt (48)

FIGURE 12 The formation of fringes of equal inclination.
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where  is the internal angle. Taking into account the half-wave shift due to the phase change 
difference of  between an internal and an external reflection, a dark fringe will result for angles 
satisfying

2
2

nt m
m

nt
cos or cos (49)

where m is an integer. Since only the angle of incidence determines the properties of the interference 
(everything else is constant), these fringes are called fringes of equal inclination. They appear in the 
back focal plane of the lens and are therefore localized at infinity since infinity is conjugate to the 
focal plane. As the observation plane is moved away from the focal plane, the visibility of the fringes 
will quickly decrease.

When the axis of the lens is normal to the surfaces of the plate, a beamsplitter arrangement is 
required to allow light from the extended source to be reflected into the lens as shown in Fig. 13. 
Along the axis, 90 , and symmetry requires that the fringes are concentric about the axis. 
In this special case, these fringes are called Haidinger fringes, and they are identical in appearance 
to Newton’s rings [Eq. (30)]. If there is an intensity maximum at the center, the radii of the other 
bright fringes are proportional to the square roots of integers. As with other fringes formed by a 
plane-parallel plate (discussed earlier), the order of interference decreases with the observation 
radius on the screen. As  increases, the value of m decreases.

Fringes of Equal Thickness

The existence of fringes of equal inclination depends on the incident light being reflected by two 
parallel surfaces, and the angle of incidence is the mechanism which generates changes in the OPD. 
There are many arrangements with an extended source where the reflections are not parallel, and 
the resulting changes in OPD dominate the angle-of-incidence considerations. The fringes pro-
duced in this situation are called fringes of equal thickness, and we have stated earlier that they will be 
localized in regions where the OPD between the two reflections is small.

FIGURE 13 The formation of Haidinger fringes.
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An example of fringes of equal thickness occurs with a wedged glass plate illuminated by a quasi-
monochromatic extended source. We know that for each point in the source, a pattern comprising 
equispaced parallel fringes results, and the net pattern is the sum of all of these individual patterns. 
However, it is easier to examine this summation by looking at the OPD between the two reflected 
rays reaching an observation point P from a source point S. This is shown in Fig. 14. The wedge 
angle is , the thickness of the plate at this location is t, its index is n, and the internal ray angle is 

 The exact OPD is difficult to calculate, but under the assumption that  is small and the wedge is 
sufficiently thin, the following result for the OPD is obtained:

OPD cos2nt (50)

As other points on the source are examined, the reflection needed to get light to the observation 
point will move to a different location on the plate, and different values of both t and  will result. 
Different source points may have greatly different OPDs, and in general the fringe pattern will wash 
out in the vicinity of P.

This reduction in visibility can be avoided if the observation point is placed in or near the wedge. 
In this case, all of the paths between S and P must reflect from approximately the same location on 
the wedge, and the variations in the thickness t are essentially eliminated. The point P where the two 
reflected rays cross may be virtual. The remaining variations in the OPD are from the different ’s 
associated with different source points. This variation may be limited by observing the fringe pattern 
with an optical system having a small entrance pupil. This essentially limits the amount of the source 
that is used to examine any area on the surface. A microscope or the eye focused on the wedge can 
be used to limit the angles. If the range of values of  is small, high-visibility fringes will appear to 
be localized at the wedge. The visibility of the fringes will decrease as the wedge thickness increases.

It is common to arrange the system so that the fringes are observed in a direction approximately 
normal to the surface. Taking into account the additional phase shift introduced at the reflection 
from one of the surfaces, the conditions for bright and dark fringes are then

Bright: 2
2

nt m (51)

and

Dark: 2nt m (52)

FIGURE 14 The ray path between a point source and an observation 
point for a wedged plate.
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where m is an integer greater than or equal to zero. Since t increases linearly across the wedge, the 
observed pattern will be straight equispaced fringes.

These same conditions hold for any plate where the two surfaces are not parallel. The surfaces 
may have any shape, and as long as the surface angles are small and the plate is relatively thin, high-
visibility fringes localized in the plate are observed. Along a given fringe the value of m is constant, 
so that a fringe represents a contour of constant optical path length nt. If the index is constant, we 
have fringes of equal thickness. The fringes provide a contour map of the plate thickness, and adja-
cent fringes correspond to a change of thickness of /2n . An irregularly shaped pattern will result 
from the examination of a plate of irregular thickness.

Thin Films

With the preceding background, we can easily explain the interference characteristics of thin films.
There are two distinct types of films to consider. The first is a thin film of nonuniform thickness, 
and examples are soap bubbles and oil films on water. The second type is a uniform film, such as 
would be obtained by vacuum deposition and perhaps used as an antireflection coating. Both of 
these films share the characteristic of being extremely thin—usually not more than a few wave-
lengths thick and often just a fraction of a wavelength thick.

With a nonuniform film, fringes of equal thickness localized in the film are produced. 
There will be a dark fringe in regions of the film where it is substantially thinner than a half 
wave. We are assuming that the film is surrounded by a lower-index medium such as air so 
that there is an extra  phase shift. If white light is used for illumination, colored bands will 
be produced similar to those diagramed in Fig. 10b (the curves would need to be modified 
to rescale the x axis to OPD or film thickness). Each color will produce its first maximum in 
intensity when the optical thickness of the film is a quarter of that wavelength. As the film 
thickness increases, the apparent fringe color will first be blue, then green, and finally red. 
These colored fringes are possible because the film is very thin, and the order of interference 
m is often zero or one [Eqs. (51) and (52)]. The interference patterns in the various colors 
are just starting to get out of phase, and interference colors are visible. As the film thickness 
increases, the various wavelength fringes become jumbled, and distinct fringe patterns are no 
longer visible.

When a uniform thin film is examined with an extended source, fringes of equal inclina-
tion localized at infinity are produced. These fringes will be very broad since the thickness 
of the film is very small, and large angles will be required to obtain the necessary OPD for 
a fringe [Eq. (49)]. A common use of this type of film is as an antireflection coating. In this 
application, a uniform coating that has an optical thickness of a quarter wavelength is applied 
to a substrate. The coating index is lower than the substrate index, so an extra phase shift is 
not introduced. A wave at normal incidence is reflected by both surfaces of the coating, and 
these reflected waves are interfered. If the incident wavelength matches the design of the 
film, the two reflected waves are out of phase and interfere destructively. The reflected inten-
sity will depend on the Fresnel reflection coefficients at the two surfaces, but will be less than 
that of the uncoated surface. When a different wavelength is used or the angle of incidence 
is changed, the effectiveness of the antireflection coating is reduced. More complicated film 
structures comprising many layers can be produced to modify the reflection or transmission 
characteristics of the film.

Fizeau Interferometer

The Fizeau interferometer compares one optical surface to another by placing them in close prox-
imity. A typical arrangement is shown in Fig. 15, where the extended source is filtered to be quasi-
monochromatic. A small air gap is formed between the two optical surfaces, and fringes of equal 
thickness are observed between the two surfaces. Equations (51) and (52) describe the location of 
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the fringes, and the index of the thin wedge is now that of air. Along a fringe, the gap is of constant 
thickness, and adjacent fringes correspond to a change of thickness of a half wavelength. This inter-
ferometer is sometimes referred to as a Newton interferometer.

This type of interferometer is the standard test instrument in an optical fabrication shop. 
One of the two surfaces is a reference or known surface, and the interferometric comparison of 
this reference surface and the test surface shows imperfections in the test part. Differences in 
radii of the two surfaces are also apparent. The fringes are easy to interpret, and differences of 
as little as a twentieth of a wavelength can be visually measured. These patterns and this inter-
ferometer are further discussed in Chap. 13, “Optical Testing,” in Vol. II. The interferometer is 
often used without the beamsplitter, and the fringes are observed in the direct reflection of the 
source from the parts.

The classic fringe pattern produced by a Fizeau interferometer is Newton’s rings. These are 
obtained by comparing a convex sphere to a flat surface. The parabolic approximation for the sag of 
a sphere of radius R is

sag( )
2

2R
(53)

and  is the radial distance from the vertex of the sphere. If we assume the two surfaces are in con-
tact at 0, the OPD between the reflected waves is twice the gap, and the condition for a dark 
fringe is

m R (54)

Optical surfaces Air gap

B.S.

Extended
source

Eye

FIGURE 15 Fizeau interferometer.
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Circular fringes that increase in radius as the square root of  are observed. Note that a dark fringe 
occurs at the center of the pattern. In reflection, this point must be dark, as there is no interface at 
the contact point to produce a reflection.

Michelson Interferometer

There are many two-beam interferometers which allow the surfaces producing the two 
wavefronts to be physically separated by a large distance. These instruments allow the two 
wavefronts to travel along different optical paths. One of these is the Michelson interferometer
diagramed in Fig. 16a. The two interfering wavefronts are produced by the reflections from 
the two mirrors. A plate beamsplitter with one face partially silvered is used, and an identical 
block of glass is placed in one of the arms of the interferometer to provide the same amount of 
glass path in each arm. This cancels the effects of the dispersion of the glass beamsplitter and 
allows the system to be used with white light since the optical path difference is the same for 
all wavelengths.

Figure 16b provides a folded view of this interferometer and shows the relative optical 
position of the two mirrors as seen by the viewing screen. It should be obvious that the two 

FIGURE 16 Michelson interferometer: (a) schematic view and (b) folded view 
showing the relative optical position of the two mirrors.
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mirrors can be thought of as the two surfaces of a “glass” plate that is illuminated by the 
source. In this case, the index of the fictitious plate is one, and the reflectivity at the two sur-
faces is that of the mirrors. Depending on the mirror orientations and shapes, the interferom-
eter either mimics a plane-parallel plate of adjustable thickness, a wedge of arbitrary angle and 
thickness, or the comparison of a reference surface with an irregular or curved surface. The 
type of fringes that are produced will depend on this configuration, as well as on the source 
used for illumination.

When a monochromatic point source is used, nonlocalized fringes are produced, and the 
imaging lens is not needed. Two virtual-source images are produced, and the resulting fringes 
can be described by the interference of two spherical waves (discussed earlier). If the mirrors 
are parallel, circular fringes centered on the line normal to the mirrors result as with a plane-
parallel plate. The source separation is given by twice the apparent mirror separation. If the 
mirrors have a relative tilt, the two source images appear to be laterally displaced, and hyper-
bolic fringes result. Along a plane bisecting the source images, straight equispaced fringes are 
observed.

When an extended monochromatic source is used, the interference fringes are localized. If the 
mirrors are parallel, fringes of equal inclination or Haidinger fringes (as described earlier) are pro-
duced. The fringes are localized at infinity and are observed in the rear focal plane of the imaging 
lens. Fringes of equal thickness localized at the mirrors are generated when the mirrors are tilted. 

Extended
source

B.S.

Screen

1

2

FIGURE 16 (Continued)
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The apparent mirror separation should be kept small, and the imaging lens should focus on the 
mirror surface.

If the extended source is polychromatic, colored fringes localized at the mirrors result. 
They are straight for tilted mirrors. The fringes will have high visibility only if the apparent 
mirror separation or OPD is smaller than the coherence length of the source. Another way 
of stating this is that the order of interference m must be small to view the colored fringes. 
As m increases, the fringes will wash out. The direct analogy here is a thin film. As the mirror 
separation is varied, the fringe visibility will vary. The fringe visibility as a function of mir-
ror separation is related to the source frequency spectrum (see under “Source Spectrum” and 
“Coherence and Interference”), and this interferometer forms the basis of a number of spec-
trometers. When the source spectrum is broad, chromatic fringes cannot be viewed with the 
mirrors parallel. This is because the order of interference for fringes of equal inclination is a 
maximum at the center of the pattern.

An important variation of the Michelson interferometer occurs when monochromatic colli-
mated light is used. This is the Twyman-Green interferometer, and is a special case of point-source 
illumination with the source at infinity. Plane waves fall on both mirrors, and if the mirrors are 
flat, nonlocalized equispaced fringes are produced. Fringes of equal thickness can be viewed by 
imaging the mirrors onto the observation screen. If one of the mirrors is not flat, the fringes rep-
resent changes in the surface height. The two surfaces are compared as in the Fizeau interferom-
eter. This interferometer is an invaluable tool for optical testing.

2.7 MULTIPLE BEAM INTERFERENCE

Throughout the preceding discussions, we have assumed that only two waves were being interfered. 
There are many situations where multiple beams are involved. Two examples are the diffraction 
grating and a plane-parallel plate. We have been ignoring multiple reflections, and in some instances 
these extra beams are very important. The net electric field is the sum of all of the component fields. 
The two examples noted above present different physical situations: all of the interfering beams have 
a constant intensity with a diffraction grating, and the intensity of the beams from a plane-parallel 
plate decreases with multiple reflections.

Diffraction Grating

A diffraction grating can be modeled as a series of equispaced slits, and the analysis bears a strong 
similarity to the Young’s double slit (discussed earlier). It operates by division of wavefront, and the 
geometry is shown in Fig. 17. The slit separation is d, the OPD between successive beams for a given 
observation angle  is d sin ( ), and the corresponding phase difference 2 d sin /( ) . The field 
due to the nth slit at a distant observation point is

E Ae j Nj
i j( ) ( )1 1 2, , . . ., (55)

where all of the beams have been referenced to the first slit, and there are N total slits. The net 
field is
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which simplifies to
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The resulting intensity is
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(58)

where I0 is the intensity due to an individual slit.
This intensity pattern is plotted in Fig. 18 for N 5. The result for N 2, which is the double-

slit experiment, is also shown. The first thing to notice is that the locations of the maxima are 
the same, independent of the number of slits. A maximum of intensity is obtained whenever the 
phase difference between adjacent slits is a multiple of 2 . These maxima occur at the diffraction 
angles given by

sin( )
m
d

(59)

where m is an integer. The primary difference between the two patterns is that with multiple slits, 
the intensity at the maximum increases to N 2 times that due to a single slit, and this energy is con-
centrated into a much narrower range of angles. The full width of a diffraction peak between inten-
sity zero corresponds to a phase difference of 4 /N .

The number of intensity zeros between peaks is N − 1. As the number of slits increases, the angu-
lar resolution or resolving power of the grating greatly increases. The effects of a finite slit width can 
be added by replacing I0 in Eq. (58) by the single-slit diffraction pattern. This intensity variation 
forms an envelope for the curve in Fig. 18.

d
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FIGURE 17 Diffraction grating: multiple-beam interference 
by division of wavefront.
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Plane-Parallel Plate

The plane-parallel plate serves as a model to study the interference of multiple waves obtained 
by division of amplitude. As we shall see, the incremental phase difference between the interfer-
ing beams is constant but, in this case, the beams have different intensities. A plate of thickness 
t and index n with all of the reflected and transmitted beams is shown in Fig. 19. The amplitude 
reflection and transmission coefficients are  and , and  and , where the primes indicate 
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FIGURE 18 The interference patterns produced by gratings with 2 and 5 slits.
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FIGURE 19 Plane-parallel plate: multiple-beam interference by division of amplitude.
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reflection or transmission from within the plate. The first reflected beam is 180  out of phase 
with the other reflected beams since it is the only beam to undergo an external reflection, and 

− . Note that  occurs only in odd powers for the reflected beams. Each successive reflected 
or transmitted beam is reduced in amplitude by 2. The phase difference between successive 
reflected or transmitted beams is the same as we found when studying fringes of equal inclination 
from a plane-parallel plate:

4 nt cos( )
(60)

where is the angle inside the plate.
The transmitted intensity can be determined by first summing all of the transmitted amplitudes:

E E A ej
i j

jj

( ) ( )2 1

11

(61)

where the phase is referenced to the first transmitted beam. The result of the summation is

E
A

ei
( )

1 2
(62)

The transmitted intensity It is the squared modulus of the amplitude which, after simplification, 
becomes
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(63)

where I0 is the incident intensity. We have also assumed that there is no absorption in the plate, and 
therefore 2 1. Under this condition of no absorption, the sum of the reflected and transmit-
ted light must equal the incident light: It Ir = I0. The expressions for the transmitted and reflected 
intensities are then
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and F is defined as

F
2

1 2

2

(66)

F is the coefficient of finesse of the system and is a function of the surface reflectivity only. The value 
of F will have a large impact on the shape of the intensity pattern. Note that the reflected intensity 
could also have been computed by summing the reflected beams.

A maximum of transmitted intensity, or a minimum of reflected intensity, will occur when 
/2 m , where m is an integer. Referring back to Eq. (60), we find that this corresponds to the 

angles

cos
m
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(67)
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This is exactly the same condition that was found for a plane-parallel plate with two beams 
[Eq. (49)]. With an extended source, fringes of equal inclination are formed, and they are 
localized at infinity. They must be at infinity since all of the reflected or transmitted beams 
are parallel for a given input angle. The fringes are observed in the rear focal plane of a view-
ing lens. If the optical axis of this lens is normal to the surface, circular fringes about the axis 
are produced. The locations of the maxima and minima of the fringes are the same as were 
obtained with two-beam interference

The shape of the intensity profile of these multiple beam fringes is not sinusoidal, as it 
was with two beams. A plot of the transmitted fringe intensity [Eq. (64)] as a function of 

 is shown in Fig. 20 for several values of F. When the phase difference is a multiple of 2 ,
we obtain a bright fringe independent of F or . When F is small, low-visibility fringes are 
produced. When F is large, however, the transmitted intensity is essentially zero unless the 
phase has the correct value. It drops off rapidly for even small changes in . The transmit-
ted fringes will be very narrow bright circles on an essentially black background. The reflected 
intensity pattern is one minus this result, and the fringe pattern will be very dark bands on a 
uniform bright background. The reflected intensity profile is plotted in Fig. 21 for several 
values of F.

The value of F is a strong function of the surface reflectivity R 2. We do not obtain appre-
ciable values of F until the reflectivity is approximately one. For example, R 0.8 produces F 80,
while R 0.04 gives F 0.17. This latter case is typical for uncoated glass, and dim broad fringes in 
reflection result, as in Fig. 21. The pattern is approximately sinusoidal, and it is clear that our earlier 
assumptions about ignoring multiple reflections when analyzing a plane-parallel plate are valid for 
many low-reflectivity situations.

The multiple beam interference causes an energy redistribution much like that obtained from 
a diffraction grating. A strong response is obtained only when all of the reflected beams at a given 
angle add up in phase. The difference between this pattern and that of a diffraction pattern is that 
there are no oscillations or zeros between the transmitted intensity maxima. This is a result of the 
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FIGURE 20 The transmitted intensity of a multiple-beam interference pattern produced 
by a plane-parallel plate.
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unequal amplitudes of the interfering beams. With a diffraction grating, all of the beams have equal 
amplitude, and the resultant intensity oscillates as more beams are added.

Multiple-beam fringes of equal thickness can be produced by two high-reflectivity surfaces in 
close proximity in a Fizeau interferometer configuration. The dark fringes will narrow to sharp lines, 
and each fringe will represent a contour of constant OPD between the surfaces. As before, a dark 
fringe corresponds to a gap of an integer number of half wavelengths. The area between the fringes 
will be bright. The best fringes will occur when the angle and the separation between the surfaces is 
kept small. This will prevent the multiple reflections from walking off or reflecting out of the gap.

Fabry-Perot Interferometer

The Fabry-Perot interferometer is an important example of a system which makes use of multiple-
beam interference. This interferometer serves as a high-resolution spectrometer and also as an opti-
cal resonator. In this latter use, it is an essential component of a laser. The system is diagrammed in 
Fig. 22, and it consists of two highly reflective parallel surfaces separated by a distance t. These two 
separated reflective plates are referred to as a Fabry-Perot etalon or cavity, and an alternate arrange-
ment has the reflected coatings applied to the two surfaces of a single glass plate. The two lenses 
serve to collimate the light from a point on the extended source in the region of the cavity and to 
then image this point onto the screen. The screen is located in the focal plane of the lens so that 
fringes of equal inclination localized at infinity are viewed. As we have seen, light of a fixed wave-
length will traverse the etalon only at certain well-defined angles. Extremely sharp multiple-beam 
circular fringes in transmission are produced on the screen, and their profile is the same as that 
shown in Fig. 20.

If the source is not monochromatic, a separate independent circular pattern is formed for each 
wavelength. Equation (67) tells us that the location or scale of the fringes is dependent on the wave-
length. If the source is composed of two closely spaced wavelengths, the ring structure is doubled, 

FIGURE 21 The reflected intensity of a multiple-beam interference pattern produced by a 
plane-parallel plate.
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and the separation of the two sets of rings allows the hyperfine structure of the spectral lines to be 
evaluated directly. More complicated spectra, usually composed of discrete spectral lines, can also 
be measured. This analysis is possible even though the order of interference is highest in the center 
of the pattern. If the phase change due to the discrete wavelengths is less than the phase change 
between adjacent fringes, nonoverlapping sharp fringes are seen.

A quantity that is often used to describe the performance of a Fabry-Perot cavity is the finesse 
. It is a measure of the number of resolvable spectral lines, and is defined as the ratio of the phase 

difference between adjacent fringes to the full width-half maximum FWHM of a single fringe. Since 
the fringe width is a function of the coefficient of finesse, the finesse itself is also a strong function of 
reflectivity. The phase difference between adjacent fringes is 2 , and the half width-half maximum 
can be found by setting Eq. (64) equal to 1

2
 and solving for . The FWHM is twice this value, and 

under the assumption that F is large,

FWHM
4

F
(68)

and the finesse is

2
2 1 12FWHM

F R
R

(69)

where  is the amplitude reflectivity, and R is the intensity reflectivity. Typical values for the finesse 
of a cavity with flat mirrors is about 30 and is limited by the flatness and parallelism of the mirrors. 
There are variations in  across the cavity. Etalons consisting of two curved mirrors can be con-
structed with a much higher finesse, and values in excess of 10,000 are available.

Another way of using the Fabry-Perot interferometer as a spectrometer is suggested by rewriting 
the transmission [Eq. (64)] in terms of the frequency v :

T
I

I F tv c
t

0
2

1

1 2sin ( )/
(70)

where Eq. (60) relates the phase difference to the wavelength, t is the mirror separation, and 
an index of one and normal incidence ( 0) have been assumed. This function is plotted in 
Fig. 23, and a series of transmission spikes separated in frequency by c/2t are seen. A maximum 
occurs whenever the value of the sine is zero. The separation of these maxima is known as the 
free spectral range, FSR. If the separation of the mirrors is changed slightly, these transmission 
peaks will scan the frequency axis. Since the order of interference m is usually very large, it takes 

FIGURE 22 Fabry-Perot interferometer.
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only a small change in the separation to move the peaks by one FSR. In fact, to scan one FSR, the 
required change in separation is approximately t/m. If the on-axis transmitted intensity is moni-
tored while the mirror separation is varied, a high-resolution spectrum of the source is obtained. 
The source spectrum must be contained within one free spectral range so that the spectrum is 
probed by a single transmission peak at a time. If this were not the case, the temporal signal 
would contain simultaneous contributions from two or more frequencies resulting from different 
transmission peaks. Under this condition there are overlapping orders, and it is often prevented 
by using an auxiliary monochromator with the scanning Fabry-Perot cavity to preselect or limit 
the frequency range of the input spectrum. The resolution v of the trace is limited by the finesse 
of the cavity.

For a specific cavity, the value of m at a particular transmission peak, and some physical insight 
into the operation of this spectrometer, is obtained by converting the frequency of a particular 
transmission mode mc/2t into wavelength:

2
2

t
m

t mor (71)

For the mth transmission maximum, exactly m half waves fit across the cavity. This also implies 
that the round-trip path within the cavity is an integer number of wavelengths. Under this condi-
tion, all of the multiply-reflected beams are in phase everywhere in the cavity, and therefore all 
constructively interfere. A maximum in the transmission occurs. Other maxima occur at different 
wavelengths, but these specific wavelengths must also satisfy the condition that the cavity spacing is 
an integer number of half wavelengths.

These results also allow us to determine the value of m. If a 1-cm cavity is used and the 
nominal wavelength is 500 nm, m 40,000 and FSR 1.5 × 1010 Hz. The wavelength interval 
corresponding to this FSR is 0.0125 nm. If a 1-mm cavity is used instead, the results are m 4000 
and FSR 1.5 × 1011 Hz 0.125 nm. We see now that to avoid overlapping orders, the spectrum 
must be limited to a very narrow range, and this range is a function of the spacing. Cavities with 
spacings of a few tens of m’s are available to increase the FSR. Increasing the FSR does have 
a penalty. The finesse of a cavity depends only on the reflectivities, so as the FSR is increased 
by decreasing t, the FWHM of the transmission modes increases to maintain a constant ratio. 
The number of resolvable spectrum lines remains constant, and the absolute spectral resolution 
decreases.

FSR

2
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2
(  + 2)

2
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2
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2

FIGURE 23 The transmission of a Fabry-Perot cavity as a function of frequency.
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A mirror translation of a half wavelength is sufficient to cover the FSR of the cavity. The usual 
scanning method is to separate the two mirrors with a piezoelectric spacer. As the applied voltage is 
changed, the cavity length will also change. An alternate method is to change the index of the air in 
the cavity by changing the pressure.

2.8 COHERENCE AND INTERFERENCE

The observed fringe visibility is a function of the spatial and temporal coherence of the source. 
The classical assumption for the analysis is that every point on an extended source radiates inde-
pendently and therefore produces its own interference pattern. The net intensity is the sum of 
all of the individual intensity patterns. In a similar manner, each wavelength or frequency of a 
nonmonochromatic source radiates independently, and the temporal average is the sum of the 
individual temporal averages. Coherence theory allows the interference between the light from two 
point sources to be analyzed, and a good visual model is an extended source illuminating the two 
pinholes in Young’s double slit. We need to determine the relationship between the light trans-
mitted through the two pinholes. Coherence theory also accounts for the effects of the spectral 
bandwidth of the source.

With interference by division of amplitude using an extended source, the light from many point 
sources is combined at the observation point, and the geometry of the interferometer determines 
where the fringes are localized. Coherence theory will, however, predict the spectral bandwidth 
effects for division of amplitude interference. Each point on the source is interfered with an image 
of that same point. The temporal coherence function relates the interference of these two points 
independently of other points on the source. The visibility function for the individual interference 
pattern due to these two points is computed, and the net pattern is the sum of these patterns for the 
entire source. The temporal coherence effects in division of amplitude interference are handled on a 
point-by-point basis across the source.

In this section, the fundamentals of coherence theory as it relates to interference are introduced. 
Much more detail on this subject can be found in Chap. 5, “Coherence Theory.”

Mutual Coherence Function

We will consider the interference of light from two point sources or pinholes. This light is derived 
from a common origin so that there may be some relationship between the complex fields at the 
two sources. We will represent these amplitudes at the pinholes as E1(t) and E2(t), as shown in 
Fig. 24. The propagation times between the two sources and the observation point are t1 and t2,

FIGURE 24 Geometry for examining the mutual coherence of two 
sources.



INTERFERENCE  2.37

where the times are related to the optical path lengths by ti OPLi c. The two complex ampli-
tudes at the observation point are then E1(t − t1) and E2(t − t2), where the amplitudes have been 
scaled to the observation plane. The time-average intensity at the observation point can be found 
by returning to Eq. (13), which is repeated here with the time dependence:

I I I E t t E t t E t t E t1 2 1 1 2 2 1 1 2( ) ( ) ( ) ( tt2) (72)

where I1 and I2 are the intensities due to the individual sources. If we now shift our time origin by t2,
we obtain

I I I E t E t E t E t1 2 1 2 1 2( ) ( ) ( ) ( ) (73)

where

t t
c c2 1

2 1OPL OPL OPD
(74)

The difference in transit times for the two paths is . The last two terms in the expression for the 
intensity are complex conjugates, and they contain the interference terms.

We will now define the mutual coherence function 12( ):

12 1 2( ) ( ) ( )E t E t (75)

which is the cross correlation of the two complex amplitudes. With this identification, the intensity 
of the interference pattern is

I I I1 2 12 12( ) ( ) (76)

or, recognizing that a quantity plus its complex conjugate is twice the real part,

I I I1 2 122Re{ ( )} (77)

It is convenient to normalize the mutual coherence function by dividing by the square root of the 
product of the two self-coherence functions. The result is the complex degree of coherence:
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2
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(78)

and the intensity can be rewritten:

I I I I I1 2 1 2 122 Re{ ( )} (79)

We can further simplify the result by writing 12( ) as a magnitude and a phase:

12 12 12
12 12( ) | ( )| | ( )|( ) [ ( )e ei i ( )] (80)

where 12( ) is associated with the source, and ( ) is the phase difference due to the OPD 
between the two sources and the observation point [Eq. (18)]. The quantity | ( )|12 is known as the 
degree of coherence. The observed intensity is therefore

I I I I I1 2 1 2 12 122 | ( )|cos[ ( ) ( )] (81)

The effect of 12( ) is to add a phase shift to the intensity pattern. The fringes will be shifted. A sim-
ple example of this situation is Young’s double-slit experiment illuminated by a tilted plane wave 
or a decentered source. With quasi-monochromatic light, the variations of both | ( )|12  and 12( )
with are slow with respect to changes of ( ), so that the variations in the interference pattern in 
the observation plane are due primarily to changes in  with position.
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A final rewrite of Eq. (81) leads us to the intensity pattern at the observation point:

I I
I I

I I0
1 2

1 2
12 121

2
| ( )|cos[ ( ) ( )] (82)

where I I I0 1 2. The fringe visibility is therefore

( ) | ( )|
2 1 2

1 2
12

I I

I I
(83)

and is a function of the degree of coherence and . Remember that is just the temporal measure 
of the OPD between the two sources and the observation point. If the two intensities are equal, the 
fringe visibility is simply the degree of coherence: ( ) | ( )|12 . The degree of coherence will take 
on values between 0 and 1. The source is coherent when | ( )|12 1, and completely incoherent 
when | ( )|12 0. The source is said to be partially coherent for other values. No fringes are observed 
with an incoherent source, and the visibility is reduced with a partially coherent source.

Spatial Coherence

The spatial extent of the source and its distance from the pinholes will determine the visibility of the 
fringes produced by the two pinhole sources (see Fig. 25). Each point on the source will produce a 
set of Young’s fringes, and the position of this pattern in the observation plane will shift with source 
position. The value of 12( ) changes with source position. The existence of multiple shifted pat-
terns will reduce the overall visibility. As an example, consider a quasi-monochromatic source that 
consists of a several point sources arranged in a line. Each produces a high modulation fringe pat-
tern in the observation plane (Fig. 26a), but there is a lateral shift between each pattern. The net pat-
tern shows a fringe with the same period as the individual patterns, but it has a reduced modulation 
due to the shifts (Fig. 26b). This reduction in visibility can be predicted by calculating the degree of 
coherence | ( )|12  at the two pinholes.

Over the range of time delays between the interfering beams that are usually of interest, 
the degree of coherence is a slowly varying function and is approximately equal to the value at

0 : | 12( )| | 12(0)| | 12|. The van Cittert–Zernike theorem allows the degree of coherence in 
the geometry of Fig. 25 to be calculated. Let be the angular separation of the two pinholes as seen 
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FIGURE 25 An extended source illuminating two pinholes.
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from the source. This theorem states that degree of coherence between two points is the modulus of 
the scaled and normalized Fourier transform of the source intensity distribution:

| |
( , )

( , )

( / )( )

12

2I e d d

I d

i

S

x y

d
S

(84)

where x and y are the x and y components of the pinhole separation , and the integral is over the 
source.

Two cases that are of particular interest are a slit source and a circular source. The application of 
the van Cittert–Zernike theorem yields the two coherence functions:

Slit source of width sincw
w x: | |12 ssinc

wa
z

(85)

Circular source of diameter d

J
d x

: | |12

12

d

J
da
z

da
z

x

2 1
 (86)

FIGURE 26 The interference pattern produced by a linear source: (a) the individual fringe 
patterns and (b) the net fringe pattern with reduced visibility.
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where a is the separation of the pinholes, z is the distance from the source to the pinholes, the sinc 
function is defined by Eq. (42), and J1 is a first-order Bessel function. The pinholes are assumed to 
be located on the x axis. These two functions share the common characteristic of a central core sur-
rounded by low-amplitude side lobes. We can imagine these functions of pinhole spacing mapped 
onto the aperture plane. The coherence function is centered on one of the pinholes. If the other 
pinhole is then within the central core, high-visibility fringes are produced. If the pinhole spacing 
places the second pinhole outside the central core, low-visibility fringes result.

Michelson Stellar Interferometer

The Michelson stellar interferometer measures the diameter of stars by plotting out the degree of 
coherence due to the light from the star. The system is shown in Fig. 27. Two small mirrors sepa-
rated by the distance a sample the light and serve as the pinholes. The spacing between these mir-
rors can be varied. This light is then directed along equal path lengths into a telescope, and the two 
beams interfere in the image plane. To minimize chromatic effects, the input light should be filtered 
to a small range of wavelengths. The modulation of the fringes is measured as a function of the mir-
ror spacing to measure the degree of coherence in the plane of the mirrors. This result will follow 

FIGURE 27 Michelson stellar interferometer.
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Eq. (86) for a circular star, and the fringe visibility will go to zero when a 1.22 , where = d/z
is the angular diameter of the star. We measure the mirror separation that produces zero visibility 
to determine . In a similar manner, this interferometer can be used to measure the spacing of two 
closely spaced stars.

Temporal Coherence

When examining temporal coherence effects, we use a source of small dimensions (a point source) 
that radiates over a range of wavelengths. The light from this source is split into two beams and 
allowed to interfere. One method to do this is to use an amplitude-splitting interferometer. Since 
the two sources are identical, the mutual coherence function becomes the self-coherence function

11( ). Equal-intensity beams are assumed. The complex degree of temporal coherence becomes

11
11

11

1 1

1
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( )
( )

( )

( ) ( )
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E t E t

E t 22
(87)

After manipulation, it follows from this result that 11( ) is the normalized Fourier transform of the 
source intensity spectrum S(v):
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The fringe visibility is the modulus of this result. Since 11( ) has a maximum at 0, the maxi-
mum fringe visibility will occur when the time delay between the two beams is zero. This is consis-
tent with our earlier observation under “Source Spectrum” that the fringes will be localized in the 
vicinity of zero OPD.

As an example, we will repeat the earlier problem of a uniform source spectrum:

S v
v v

v
( ) rect 0 (89)

where v0 is the average frequency and v is the bandwidth. The resulting intensity pattern is

I I I v v0 12 0 01 1 2{ Re{ ( )}} [ ( )cos( )sinc ]] (90)

where the sinc function is the Fourier transform of the rect function. Using OPD/c from 
Eq. (74), we can rewrite this equation in terms of the OPD to obtain the same result expressed 
in Eq. (47).

Laser Sources

The laser is an important source for interferometry, as it is a bright source of coherent radiation. 
Lasers are not necessarily monochromatic, as they may have more than one longitudinal mode, and 
it is important to understand the unique temporal coherence properties of a laser in order to get 
good fringes. The laser is a Fabry-Perot cavity that contains a gain medium. Its output spectrum 
is therefore a series of discrete frequencies separated by c/2nL, where L is the cavity length. For gas 
lasers, the index is approximately equal to one, and we will use this value for the analysis. If G(v) is 
the gain bandwidth, the frequency spectrum is

S v G v
Lv
c

( ) ( ) comb
2 (91)
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where a comb function is a series of equally spaced delta functions. The number of modes contained 
under the gain bandwidth can vary from 1 or 2 up to several dozen. The resulting visibility function 
can be found by using Eq. (88):

( ) | ( )| ( ) ( )11 2
G

c
L

Gcomb commb
OPD

2L
(92)

where G( ) is the normalized Fourier transform of the gain bandwidth, and  indicates convolu-
tion. This result is plotted in Fig. 28, where G( ) is replicated at multples of 2L. The width of these 
replicas is inversely proportional to the gain bandwidth. We see that as long as the OPD between 
the two optical paths is a multiple of twice the cavity length, high-visibility fringes will result. This 
condition is independent of the number of longitudinal modes of the laser. If the laser emits a single 
frequency, it is a coherent source and good visibility results for any OPD.

2.9 APPLICATIONS OF INTERFERENCE

The fundamental measurement unit associated with interference is the wavelength of light. Every 
time the OPD in the system changes by one wave, an additional fringe is produced. Because of this 
sensitivity, interferometers find widespread use in many metrology and optical testing applica-
tions. Many of these applications are detailed in subsequent chapters of this Handbook, includ-
ing Chap. 32, “Interferometers,” in this volume, and Chap. 12, “Optical Metrology,” and Chap. 13, 
“Optical Testing,” in Vol. II. The applications of interferometry include distance and angle mea-
surement, surface figure and finish metrology, profilometry, and spectroscopy. Techniques such as 
phase-shifting interferometry, heterodyne interferometry, and stitching interferometry have enabled 
the analysis of the interference patterns associated with the many interferometric measurement 
techniques in use.

The use of lasers in interferometers has greatly increased their utility. Because of their long 
coherence length, interference fringes can be produced even when there is a large OPD between the 
two interfering beams. Instruments such as the Tywman-Green interferometer and the laser-Fizeau 
interferometer can be used in a compact form to test very large optical surfaces.
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32.1 GLOSSARY

A area

a amplitude 

C ratio of peaks to valleys 

d distance

E electric field

F finesse

FSR free spectral range

I intensity

Ji(  ) Bessel function

L length

m integer

N number of fringes

n refractive index

p optical path difference

R reflectance

r radius

T transmittance

v velocity

wavelength

angle

frequency

phase

phase difference

angular velocity
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32.2 INTRODUCTION

Optical interferometers have made possible a variety of precision measurements using the interfer-
ence phenomena produced by light waves.1,2 This chapter presents a brief survey of the basic types 
of interferometers and discusses some of their applications.

32.3 BASIC TYPES OF INTERFEROMETERS

Interferometric measurements require an optical arrangement in which two or more beams, 
derived from the same source but traveling along separate paths, are made to interfere. 
Interferometers can be classified as two-beam interferometers or multiple-beam interferometers 
according to the number of interfering beams; they can also be grouped according to the methods 
used to obtain these beams.

The Fizeau Interferometer

In the Fizeau interferometer, as shown in Fig. 1, interference fringes of equal thickness are formed 
between two flat surfaces separated by an air gap and illuminated with a collimated beam. If one of 
the surfaces is a standard reference flat surface, the fringe pattern is a contour map of the errors of 
the test surface. Absolute measurements of deviations from flatness can be made by an intercom-
parison of three surfaces. Modified forms of the Fizeau interferometer are also used to test convex 
and concave surfaces by using a converging or diverging beam.3

The Michelson Interferometer

The Michelson interferometer, shown schematically in Fig. 2, uses a beam splitter to divide and 
recombine the beams. As can be seen, one of the beams traverses the beam splitter three times, 
while the other traverses it only once. Accordingly, a compensating plate of the same thickness as 
the beam splitter is introduced in the second beam to equalize the optical paths in glass. With an 
extended source, the interference pattern is similar to that produced in a layer of air bounded by the 
mirror M1 and M2

, the image of the other mirror in the beam splitter. With collimated light, fringes 
of equal thickness are obtained. The Michelson interferometer modified to use collimated light (the 
Twyman-Green interferometer) is used extensively in optical testing.4

FIGURE 1 The Fizeau interferometer.
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The Mach-Zender Interferometer

The Mach-Zehnder interferometer uses two beam splitters and two mirrors to divide and recombine 
the beams. As shown in Fig. 3, the fringe spacing and the plane of localization of the fringes obtained 
with an extended source can be controlled by varying the angle between the beams and their lateral 
separation when they emerge from the interferometer. The Mach-Zehnder interferometer has been 
used for studies of gas flows and plasmas.

The Sagnac Interferometer

In the Sagnac interferometer, as shown in Fig. 4, the two beams traverse the same closed path in 
opposite directions. Because of this, the interferometer is extremely stable and easy to align, even 
with an extended broadband light source.

FIGURE 3 The Mach-Zehnder interferometer.

FIGURE 2 The Michelson interferometer.
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The Sagnac interferometer has been used for rotation sensing. When the interferometer is 
rotated with an angular velocity  about an axis making an angle  with the normal to the plane of 
the interferometer, a phase difference  is introduced between the beams given by the relation

( )8 A ccos / (1)

where A is the area enclosed by the light path,  is the wavelength, and c is the speed of light.

Polarization Interferometers

Polarization interferometers are used in interference microscopy.5 The Nomarski interferometer, shown 
schematically in Fig. 5, uses two Wollaston (polarizing) prisms to split and recombine the beams. If the 
separation of the beams in the object plane (the lateral shear) is small compared to the dimensions of 
the object, the optical path difference corresponds to the phase gradients in the test object.

Grating Interferometers

Gratings can be used as beam splitters in the Michelson and Mach-Zender interferometers. Such an 
arrangement is very stable, since the angle between the beams is affected only to a small extent by the 
orientation of the gratings. Figure 6 is a schematic of an interferometer that has been used to test fine-
ground surfaces at grazing incidence utilizing two diffraction gratings to split and recombine the beams.6

Shearing Interferometers

Shearing interferometers are widely used for optical testing, since they eliminate the need for a refer-
ence surface. As shown in Fig. 7, in a lateral shearing interferometer two images of the test wavefront 
are superimposed with a mutual lateral displacement, while in a radial shearing interferometer one 
of the images is contracted or expanded with respect to the other.7,8

The Fabry-Perot Interferometer

The Fabry-Perot interferometer9 is used widely in high-resolution spectroscopy. It consists of two 
flat, parallel surfaces with highly reflecting, semitransparent coatings. If the surfaces are separated 
by a distance d and the medium between them has a refractive index n, the normalized value of the 
transmitted intensity at a wavelength  for rays traversing the interferometer at an angle  is

I T R RT ( ) ( )2 21 2/ cos (2)

FIGURE 4 The Sagnac interferometer.
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FIGURE 6 Grating interferometer used to test fine-ground surfaces 
at grazing incidence. (From Ref. 6.)

where T and R are, respectively, the transmittance and reflectance of the surfaces and 
( ) cos4 / nd . With an extended source of monochromatic light, the fringes seen by transmis-

sion are narrow, concentric rings. The free spectral range (FSR), which corresponds to the range of 
wavelengths that can be handled without successive orders overlapping, is given by the relation

FSR /2 2nd (3)

FIGURE 5 The Nomarski interferometer.
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while the width of the peaks at half the maximum intensity corresponds to a change in  given by 
the relation

2 1 1 2( ) /R R/ (4)

The ratio of the free spectral range to the width of the fringes at half maximum intensity is known 
as the finesse F, and is given by the relation

F R R1 2 1/ ( )/ (5)

Two useful variants of the Fabry-Perot interferometer are the multiple-passed Fabry-Perot inter-
ferometer and the confocal Fabry-Perot interferometer. With the conventional Fabry-Perot interfer-
ometer, the ratio of the intensity at the maxima to that at the minima between them is

C R R[( ) ( )]1 1 2/ (6)

x

y

S

(a)

(b)

d2d1

FIGURE 7 Fields of view in (a) lateral and (b) radial 
shearing interferometers.
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and for typical values of reflectance ( . ),R 0 95  the background due to a strong spectral line may 
mask a neighboring weak satellite. A much higher contrast factor may be obtained by double- or 
multiple-passing the interferometer.10,11

The confocal Fabry-Perot interferometer uses two spherical mirrors whose spacing is chosen, as 
shown in Fig. 8, so that their foci coincide. Any ray, after traversing the interferometer four times, 
then emerges along its original path.12 The confocal Fabry-Perot interferometer has a higher through-
put than the plane Fabry-Perot interferometer and produces a uniform output field. It is, therefore, 
the preferred form for operation in a scanning mode by using piezoelectric spacers to vary the sepa-
ration of the mirrors.

32.4  THREE-BEAM AND DOUBLE-PASSED 
TWO-BEAM INTERFEROMETERS

Because of the sinusoidal intensity distribution in two-beam interference fringes, it is difficult to 
estimate their position visually to better than 1/20 of their spacing. However, it is possible to detect 
much smaller optical path variations using the intensity changes in a system of interference fringes.

Three-Beam Interferometers

Zernike’s three-beam interferometer, shown schematically in Fig. 9, uses three beams produced by 
division of a wavefront at a screen containing three parallel, equidistant slits.13 In this arrangement, the 
optical paths of all three beams are equal at a point in the back focal plane of the lens L2. The two outer 
slits provide the reference beams, while the beam from the middle slit, which is twice as broad, is used 
for measurements. The intensity at any point in the interference pattern is then given by the relation

I I0 3 2 2 4[ ]cos cos cos (7)

where  is the phase difference between the two outer beams, and  is the phase difference between 
the middle beam and the two outer beams at the center of the field. The intensities at adjacent max-
ima are equal only when  is an odd multiple of /2. Two positions of the plane of observation can 

FIGURE 8 Ray paths in a confocal Fabry-Perot inter-
ferometer.

FIGURE 9 Zernike’s three-beam interferometer.
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be found that satisfy this condition, one inside and the other outside the focus, and any small change 
in the optical path of the middle beam can be measured from the shift in these positions.

Three-beam fringes can also be produced with an optical system similar to that in the Jamin 
interferometer.14 Settings are made by means of a compensator in the middle beam and can be 
repeated to /200 by visual observation, and to better than /1000 with a photoelectric detector.15

Double-Passed Two-Beam Interferometers

Fringes whose intensity is modulated in the same manner as three-beam fringes can be produced by 
reflecting the beams emerging from a two-beam interferometer back through the interferometer.16

In this case also, the intensity of the adjacent fringes is equal when the phase difference between the 
single-passed beams is

( )2 1 2m / (8)

where m is an integer. Measurements can be made with a precision of /1000.

32.5 FRINGE-COUNTING INTERFEROMETERS

One of the main applications of interferometry has been in accurate measurements of length using 
the wavelengths of stabilized lasers. Electronic fringe counting has become a practical technique for 
such measurements.17

The very narrow spectral line widths of lasers make it possible to use a heterodyne system. In one 
implementation of this technique, a He-Ne laser is forced to oscillate simultaneously at two frequen-
cies, v1 and v2, separated by a constant frequency difference of about 2 MHz, by applying an axial 
magnetic field.18 These two waves, which are circularly polarized in opposite senses, are converted to 
orthogonal linear polarizations by a /4 plate.

As shown in Fig. 10, a polarizing beam splitter reflects one beam to a fixed reflector, while the 
other is transmitted to a movable reflector. A differential counter receives the beat frequencies from 
the photodetector Ds and a reference photodetector DR. If the two reflectors are stationary, the two 
beat frequencies are the same, and the net count is zero. However, if one of the reflectors is moved, 
the change in the optical path is given by the net count.

FIGURE 10 Heterodyne fringe-counting interferometer. (After Ref. 18 © Copyright 
Hewlett-Packard Company. Reproduced with permission.)
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32.6 TWO-WAVELENGTH INTERFEROMETRY

If a length is known within certain limits, the use of a wavelength longer than the separation of 
these limits permits its exact value to be determined unambiguously by a single interferometric 
measurement. One way to synthesize such a long wavelength is by illuminating the interferometer 
simultaneously with two wavelengths 1 and 2. The envelope of the fringes then corresponds to the 
interference pattern that would be obtained with a synthetic wavelength

s 1 2 1 2/| | (9)

This technique can be implemented very effectively with a carbon dioxide laser, since it can oper-
ate at a number of wavelengths that are known very accurately, yielding a wide range of synthetic 
wavelengths.19

Two-wavelength interferometry and fringe-counting can be combined to measure lengths up to 
100 m by switching the laser rapidly between two wavelengths as one of the mirrors of a Twyman-
Green interferometer is moved over the distance to be measured.20

32.7 FREQUENCY-MODULATION INTERFEROMETERS

New interferometric techniques are possible with laser diodes which can be tuned electrically over a 
range of wavelengths.21 One of these is frequency-modulation interferometry.

Figure 11, shows a frequency-modulation interferometer that can be used to measure absolute 
distances, as well as relative displacements, with high accuracy.22 In this arrangement, the signal 
beam reflected from the movable mirror returns as a circularly polarized beam, since it traverses the 

/8 plate twice. The reference beam reflected from the front surface of the /8 plate interferes with 
the two orthogonally polarized components of the signal beam at the two detectors to produce out-
puts that vary in quadrature and can be fed to a counter to determine the magnitude and sign of any 
displacement of the movable mirror.

To make direct measurements of the optical path difference, the frequency of the laser is ramped 
linearly with time by using a function generator to vary the injection current of the laser. An optical 

IsolatorLaser diode

Polarizing
beam splitter

Detector

Detector

Movable
mirror

Fixed reflector
( /8 plate)

Fringe counter Storage CRO

Function
generator

FIGURE 11 Frequency-modulation interferometer for measurements of distance. 
(From Ref. 22.)
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path difference p introduces a time delay p/c between the two beams, so that they produce a beat 
signal with a frequency

f p c dv dt( )( )/ / (10)

where dv/dt is the rate at which the laser frequency is varying with time.

32.8 HETERODYNE INTERFEROMETERS

In heterodyne interferometers, a frequency difference is introduced between the two beams by 
means of two acousto-optic modulators operated at slightly different frequencies. The output signal 
from a square-law detector then contains an ac component at the difference frequency whose phase 
corresponds to the phase difference between the interfering light waves.23

Heterodyne techniques can also be used for measurements of very small changes in length.24,25 In 
the setup shown in Fig. 12, the frequency of a laser is locked to a transmission peak of a Fabry-Perot 
interferometer formed by attaching two mirrors to the ends of the sample. The beam from this slave 
laser is mixed at a photodetector with the beam from a stable reference laser. Changes in the separa-
tion of the mirrors can be evaluated from the changes in the beat frequency.

A simple arrangement for measuring small displacements uses two diode lasers with external cavi-
ties. A displacement of the reflecting mirror of one cavity results in a change in the beat frequency.26

32.9 PHASE-SHIFTING INTERFEROMETERS

In phase-shifting interferometers, the phase difference between the two beams in the interferom-
eter is varied linearly with time and the values of intensity at any point in the interference pat-
tern are integrated over a number of equal segments covering one period of the sinusoidal signal. 

FIGURE 12 Heterodyne interferometer for measurements of thermal expansion. 
(From Ref. 24.)
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Alternatively the phase difference between the two beams can be changed in a number of equal 
steps, and the corresponding values of intensity at each data point are measured and stored. In both 
cases, the values obtained can be represented by a Fourier series, whose coefficients can be evaluated 
to obtain the original phase difference between the interfering beams at each point.27,28 Typically, 
four measurements are made at each point, corresponding to phase intervals of 90°. If I1, I2, I3, and 
I4 are the values of intensity obtained, the phase difference between the interfering beams is given by 
the relation

tan ( , ) ( ) ( )x y I I I I/1 3 2 4
(11)

Phase-shifting interferometers are used widely in optical testing, since a detector array can be used 
in conjunction with a microcomputer to make measurements simultaneously at a large number of 
points covering the interference pattern.

Figure 13 is a schematic of a compact optical system (the Mirau interferometer) used for phase-
shifting interference microscopy. In this setup, the phase-steps are introduced by mounting the 
sample on a piezoelectric transducer (PZT) to which an appropriately varying voltage is applied. 
In a Fizeau interferometer, it is possible to use a laser diode as the light source and vary its output 
frequency.29 If the initial optical path difference between the beams in the interferometer is p, a fre-
quency shift v in the output of the laser diode introduces an additional phase difference between 
the beams

( )2 p v v/ (12)

Another way of shifting the phase of a beam of light is by a cyclic change in its state of polarization. 
Since the resulting phase shift (the Pancharatnam phase) is very nearly achromatic, measurements 
can be made with white light, so that phase ambiguities at steps are eliminated.30

32.10 PHASE-LOCKED INTERFEROMETERS

The output intensity from an interferometer depends on the phase difference between the beams. 
In phase-locked interferometers, any variation in the output intensity is detected and fed back 
to a phase modulator in the measurement path so as to hold the output intensity constant. The 
changes in the optical path can then be estimated from the changes in the drive signal to the phase 
modulator.31

FIGURE 13 Schematic of a compact opti-
cal system (the Mirau interferometer) used for 
phase-stepping interference microscopy.
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Drifts can be eliminated by using an ac amplifier. If the phase of one beam in the interferometer 
is subjected to a sinusoidal modulation

( )t tsin (13)

with an amplitude << , the output signal at the modulation frequency has an amplitude

I t I I J( ) ( ) ( )4 1 2
1 2

1
/ sin (14)

and drops to zero when m , where m is an integer. Since, at this point, both the magnitude and 
the sign of this signal change, it can be used as the input to a servo system that locks the phase dif-
ference between the beams at this point.

With a laser diode, it is possible to compensate for changes in the optical path difference by a 
change in the illuminating wavelength. A typical setup is shown in Fig. 14. The injection current of 
the laser then consists of a dc bias current io, a control current ic, and a sinusoidal modulation cur-
rent i t i tm m( ) cos  whose amplitude is chosen to produce the required phase modulation.32

Direct measurements of changes in the optical path are possible by sinusoidal phase-modulating 
interferometry, which uses a similar setup, except that in this case the amplitude of the phase 
modulation is much larger (typically around  radians). The modulation amplitude is determined 
from the amplitudes of the components in the detector output corresponding to the modulation 
frequency and its third harmonic. The average phase difference between the beams can then be 
determined from the amplitudes of the components at the modulation frequency and its second 
harmonic.33

32.11 LASER-DOPPLER INTERFEROMETERS

Light scattered from a moving particle undergoes a frequency shift, due to the Doppler effect, that 
is proportional to the component of its velocity in a direction determined by the directions of 
illumination and viewing. With laser light, this frequency shift can be evaluated by measuring the 
frequency of the beats produced by the scattered light and a reference beam, or by the scattered light 
from two illuminating beams incident at different angles.34,35

Amplifier

Mixer

Laser diode

Object

CCD array

( )

( )

FIGURE 14 Schematic of a phase-locked interferometer using a laser 
diode source. (From Ref. 32.)
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Laser-Doppler interferometry can be used for measurements of the velocity of moving materials,36

as well as for measurements, at a given point, of the instantaneous flow velocity of a moving fluid to 
which suitable tracer particles have been added.37 A typical optical system for measurements on flu-
ids is shown in Fig. 15. If the two illuminating beams in this arrangement make equal but opposite 
angles  with the viewing direction, the frequency of the beat signal is given by the relation

f v( sin )2| | / (15)

where v is the component of the velocity of the particle in the plane of the beams at right angles 
to the direction of observation. To distinguish between positive and negative flow directions, the 
frequency of one of the beams is offset by a known amount by means of an acousto-optical modula-
tor. Simultaneous measurements of the velocity components along two orthogonal directions can 
be made by using two pairs of beams in orthogonal planes. Interactions between the two pairs of 
beams are avoided by using different laser wavelengths.

Laser diodes and optical fibers can be used to build very compact laser-Doppler interferometers.38,39

A frequency offset can be introduced between the beams either by using a piezoelectric fiber-
stretcher driven by a sawtooth waveform in one path, or by ramping the injection current of the 
laser diode linearly.

Laser-Doppler interferometry can also be used to measure vibration amplitudes. Typically, one 
of the beams in an interferometer is reflected from a point on the vibrating specimen, while the 
other, whose frequency is offset, is reflected from a fixed reference mirror. The output from a photo-
detector then consists of a component at the offset frequency (the carrier) and two sidebands. The 
amplitude of the vibration can be determined from a comparison of the amplitudes of the carrier 
and the sidebands.40 This technique can measure vibration amplitudes down to a few thousandths 
of a nanometer.41

32.12 LASER-FEEDBACK INTERFEROMETERS

Laser-feedback interferometers use the fact that the output of a laser is strongly affected if, as shown 
in Fig. 16, a fraction of the output beam is reflected back into the laser cavity by an external mirror 
M3. The output of the laser then varies cyclically with the position of M3, one cycle of modulation 
corresponding to a displacement of M3 by half a wavelength.42

FIGURE 15 Optical arrangement used for laser-Doppler 
velocimetry.

FIGURE 16 Schematic of a laser-feedback interferometer.
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The operation of such an interferometer can be analyzed by considering the two mirrors M3
and M2 as a Fabry-Perot interferometer that replaces the output mirror of the laser. A variation in 
the spacing of M3 and M2 results in a variation in the reflectivity of this interferometer for the laser 
wavelength and, hence, in the gain of the laser.

A very compact laser-feedback interferometer can be set up with a single-mode laser diode.43

Small displacements can be detected by measuring the changes in the laser output when the laser 
current is held constant. Measurements can be made over a larger range by mounting the laser on a 
piezoelectric transducer and using an active feedback loop to stabilize the length of the optical path 
from the laser to the mirror.44

Laser-feedback interferometers can also be used for velocimetry. If the light reflected from the 
moving object is mixed with the original oscillating wave inside the laser cavity, the beat signal can 
be observed in the beam leaving the rear end of the laser.45,46 Very high sensitivity can be obtained 
with a laser diode operated near threshold.47 If a separate external cavity is used, as shown in Fig. 17, 
to ensure single-mode operation, measurements can be made at distances up to 50 m.

32.13 FIBER INTERFEROMETERS

Analogs of conventional two-beam interferometers can be built with single-mode optical fibers. 
High sensitivity can be obtained with fiber interferometers because it is possible to have very long 
optical paths in a small space. In addition, because of the extremely low noise level, sophisticated 
detection techniques can be used.

Fiber-Interferometer Rotation Sensors

Fiber interferometers were first used for rotation sensing, by replacing the ring cavity in a conven-
tional Sagnac interferometer with a closed, multiturn loop made of a single-mode fiber.48 For a loop 
rotating with an angular velocity  about an axis making an angle  with the plane of the loop, the 
phase difference introduced between the two counterpropagating beams is

( )4 Lr ccos / (16)

where L is the length of the fiber, r is the radius of the loop,  is the wavelength, and c is the speed of 
light. High sensitivity can be obtained by increasing the length of the fiber in the loop. In addition, 
very small phase shifts can be measured, and the sense of rotation determined, by introducing a 
nonreciprocal phase modulation in the beams and using a phase-sensitive detector.49

FIGURE 17 Feedback interferometer using a diode laser for velocimetry.  
(From Ref. 47.)
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Figure 18 is a schematic of a typical all-fiber interferometric rotation sensor.50 In this arrangement, 
the beam splitters are replaced by optical couplers, and a phase modulator consisting of a few turns of 
the fiber wound around a piezoelectric cylinder is located near one end of the optical fiber coil.

Fiber-interferometer rotation sensors have the advantages of small size and low cost. If care is 
taken to minimize noise due to back scattering and nonreciprocal effects due to fiber birefringence, 
performance close to the limit set by photon noise can be obtained.51

Generalized Fiber-Interferometer Sensors

The optical path length in a fiber is affected by its temperature and also changes when the fiber is 
stretched, or when the pressure changes. Accordingly, an optical fiber can be used in an interferom-
eter to sense changes in these parameters.52

Figure 19 is a schematic of an all-fiber interferometer that can be used for such measurements.53

A layout analogous to a Mach-Zehnder interferometer avoids optical feedback to the laser. Optical 

FIGURE 18 Fiber-interferometer for rotation sensing. (From Ref. 50.)

FIGURE 19 Schematic of a typical fiber-interferometer sensor. (From Ref. 53.)
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fiber couplers are used to divide and recombine the beams, and measurements can be made with 
either a heterodyne system or a phase-tracking system. Detection schemes involving either laser-
frequency switching or a modulated laser source can also be used. Optical phase shifts as small as 
10–6 radian can be detected.

Fiber interferometers can also be used for measurements of magnetic or electric fields with a 
fiber sensor bonded to a magnetostrictive element54 or jacketed with a piezoelectric polymer.55 

Phase ambiguities can be overcome by using a birefringent fiber56 or by fiber-optic low-coherence 
interferometry, using a broad-band source.57

Multiplexed Fiber-Interferometer Sensors

Fiber-interferometer sensors can be multiplexed to measure different quantities at different loca-
tions with a single light source and detector and the same set of transmission lines. Techniques 
developed for this purpose include frequency-division multiplexing, time-division multiplexing, 
and coherence multiplexing.58–62

32.14 INTERFEROMETERIC WAVE METERS

Tunable lasers have created a need for instruments that can measure their output wavelengths with 
an accuracy commensurate with their narrow line width. Dynamic wave meters have greater accu-
racy but can be used only with continous wave (cw) sources; static wave meters can also be used 
with pulsed lasers.

Dynamic Wave Meters

A dynamic wave meter typically consists of a two-beam interferometer in which the number of 
fringes crossing the field is counted as the optical path is changed by a known amount. In one form, 
shown in Fig. 20, two beams, one from the laser whose wavelength is to be determined and another 
from a frequency stabilized He-Ne laser, traverse the same two paths in opposite directions.63 The 
fringe systems formed by these two lasers are imaged on the two detectors D1 and D2, respectively. If, 
then, the end reflector is moved through a distance d, we have

1 2 2 1/ /N N (17)

where N1 and N2 are the numbers of fringes seen by D1 and D2, respectively, and 1 and 2 are the 
wavelengths in air. To obtain the highest precision, it is also necessary to measure the fractional 
order numbers. This can be done by phase-locking an oscillator to an exact multiple of the frequency 

FIGURE 20 Optical system of a dynamic interferometric wave meter. 
(From Ref. 63.)
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of the ac signal from the reference channel, or by digitally averaging the two signal frequencies.64

It is also possible to use a vernier method in which the counting cycle starts and stops when the 
phases of the two signals coincide.65 With these techniques, a precision of 1 part in 109 can be 
obtained.

Another type of dynamic wave meter uses a scanning Fabry-Perot interferometer in which the 
separation of the mirrors is changed slowly. If this interferometer is illuminated with the two wave-
lengths to be compared, peak transmission will be obtained for both wavelengths at intervals given 
by the condition

m m p1 1 2 2 (18)

where m1 and m2 are the changes in the integer order and p is the change in the optical path dif-
ference.66 A precision of 1 part in 107 can be obtained with a range of movement of only 25 mm, 
because the Fabry-Perot fringes are much sharper than two-beam fringes.

Static Wave Meters

The simplest type of static wave meter is based on the Fizeau interferometer.67 As shown in Fig. 21, 
a collimated beam from the laser is incident on two uncoated fused-silica flats separated by about 
1 mm and making an angle of about 3 min of arc with each other. The intensity distribution in the 
fringe pattern formed in the region in which the shear between the two reflected beams is zero is 
recorded by a linear detector array.68 In the first step, the integral interference order is calculated 
from the spatial period of the interference pattern: the exact value of the wavelength is then calcu-
lated from the positions of the maxima and minima.

32.15  SECOND-HARMONIC AND PHASE-CONJUGATE 
INTERFEROMETERS

Nonlinear optical elements are used in second-harmonic and phase-conjugate interferometers.69

FIGURE 21 Schematic of a static interferometric wave meter. 
(From Ref. 67.)
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Second-Harmonic Interferometers

One type of second-harmonic interferometer, shown in Fig. 22, is an analog of the Mach-Zehnder 
interferometer.70 In this interferometer, the infrared beam from a Q-switched Nd: YAG laser 
( . )1 1 06 m  is incident on a frequency-doubling crystal. The green ( . )2 0 53 m  and infrared 
beams emerging from this crystal traverse the test piece and are then incident on another frequency-
doubling crystal.

The fringe number at any point in this interferometer is

N n n d( )1 2 2/ (19)

where n1 and n2 are the refractive indices of the test specimen at 1.06 and 0.53 m, respectively, and 
d is its thickness.

Phase-Conjugate Interferometers

In a phase-conjugate interferometer, the wavefront that is being studied is made to interfere with its 
conjugate.71 Such an interferometer has the advantage that a reference wavefront is not required; in 
addition, the sensitivity of the interferometer is doubled.

Figure 23 is a schematic of a phase-conjugate interferometer that is an analog of the Fizeau 
interferometer.72 In this interferometer, the signal beam is incident on a conventional, partially 
reflecting mirror placed in front of a single crystal of barium titanate which functions as an inter-
nally self-pumped phase-conjugate mirror.

An interferometer in which both mirrors have been replaced by phase-conjugating mirrors 
is unaffected by misalignment of the mirrors and the field of view is normally completely dark. 
However, because of the delay in the response of the phase conjugator, dynamic changes in the opti-
cal path difference are displayed.73,74

FIGURE 22 Second-harmonic interferometer: analog of the Mach-
Zehnder interferometer. (From Ref. 70.)

FIGURE 23 Schematic of a phase-conjugate Fizeau 
interferometer. (From Ref. 72.)
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Interferometric Optical Switches

Nonlinear optical effects have also been exploited to develop high-speed interferometric optical 
switches.75

32.16 STELLAR INTERFEROMETERS

A star can be considered as an incoherent light source whose dimensions are small compared to 
its distance from the earth. Accordingly, the complex degree of coherence between the fields at two 
points on the earth’s surface is given by the normalized Fourier transform of the intensity distribu-
tion over the stellar disc.

Michelson’s Stellar Interferometer

Michelson used the interferometer shown schematically in Fig. 24 to make observations of the vis-
ibility of the fringes formed by light from a star, for different separations of the mirrors. The separa-
tion at which the fringes disappeared was used to determine the angular diameter of the star. The 
problems encountered by Michelson in making measurements at mirror separations greater than 6 m 
have been overcome in new versions of this interferometer.76

The Intensity Interferometer

The intensity interferometer77 uses measurements of the correlation between the fluctuations in the 
intensity at two photodetectors separated by a suitable distance, which is proportional to the square 
of the modulus of the degree of coherence of the fields. Atmospheric turbulence only affects the phase 
of the incident waves and has no effect on the measured correlation. In addition, since the spectral 
bandwidth is limited by the electronics, it is only necessary to equalize the optical paths to within a 
few centimeters. It was therefore possible to use light collectors separated by distances up to 188 m.

FIGURE 24 Michelson’s stellar interferometer.
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Heterodyne Stellar Interferometers

In heterodyne stellar interferometers, as shown in Fig. 25, light from the star is mixed with light from 
two CO2 lasers, whose frequencies are offset by 5 MHz with respect to each other, at two photodetec-
tors, and the resulting heterodyne signals are multiplied in a correlator. The output signal from the 
correlator is a measure of the degree of coherence of the wave fields at the two photodetectors.78–80

As in the intensity interferometer, it is only necessary to equalize the two paths to within a few 
centimeters. However, higher sensitivity is obtained, because the output is proportional to the prod-
uct of the intensities of the laser and the star.

Nulling Interferometers and Interferometric Arrays

Problems arise when trying to detect a planet near a star. Nulling interferometers reduce the flux 
from the star, relative to its surroundings, by making the light from the star interfere with itself.81
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FIGURE 25 Schematic of an infrared heterodyne stellar interferometer. (From Ref. 78.)
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Another advance is the application of multielement interferometric arrays to obtain high-resolution 
images of stellar objects.82,83

32.17 GRAVITATIONAL-WAVE INTERFEROMETERS

Gravitational waves produced by cosmic sources, such as binary systems of neutron stars, collaps-
ing supernovas and black holes, can be thought of as an alternating strain that propagates through 
space, affecting the dimensions and spacing of all material objects.

Since gravitational waves are transverse quadrupole waves, the effect of a gravitational wave on 
a Michelson interferometer would be a change in the difference of the lengths of the two arms.84

However, to obtain the required sensitivity to strains, of the order of 1 part in 1021, unrealistically 
long arms (>100 km) would be needed. In the LIGO project, higher sensitivity is obtained by using, 
as shown in Fig. 26, two identical Fabry-Perot interferometers (d = 4 km) at right angles to each 
other, with their mirrors mounted on freely suspended masses.85 The separations of the mirrors are 
compared by locking the frequency of a laser to a transmission peak of one interferometer and using 
a servo system to adjust the length of the other interferometer continuously, so that its peak trans-
mittance is also at the same frequency.

Even higher sensitivity is obtained by making use of the fact that, to avoid overloading the detec-
tor, the interferometer is normally adjusted so that observations are made on a dark fringe. Most of 
the light is then returned to the source. This light is recycled by using an extra mirror to reflect it 
back into the interferometer with the right phase.

FIGURE 26 Gravitational-wave detector using two Fabry-Perot interferometers. (See also color insert.) 
(From Ref. 85.)
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